This page lists literature on the use of (230Thexcess)0 as a constant flux proxy. For literature on 231Pa/230Th, see this page. This compilation is a work in progress. If you find that I missed any paper, kindly email me at yuxin_zhou@ucsb.edu
1980s:
1990s:
Francois, R., Bacon, M. P., & Suman, D. O. (1990). Thorium 230 profiling in deep-sea sediments: high-resolution records of flux and dissolution of carbonate in the equatorial Atlantic during the last 24,000 years. Paleoceanography, 5(5), 761–787. https://doi.org/0883-8305/90/90PA-016
Thomson, J., Colley, S., Anderson, R., Cook, G. T., MacKenzie, A. B., & Harkness, D. D. (1993). Holocene sediment fluxes in the northeast Atlantic from 230Thexcess and radiocarbon measurements. Paleoceanography, 8(5), 631–650.
Francois, R., & Bacon, M. P. (1994). Heinrich events in the North Atlantic: radiochemical evidence. Deep-Sea Research Part I, 41(2), 315–334. https://doi.org/10.1016/0967-0637(94)90006-X
Thomson, J., Higgs, N. C., & Clayton, T. (1995). A geochemical criterion for the recognition of Heinrich events and estimation of their depostional fluxes by the (230Thexcess)0 profiling method. Earth and Planetary Science Letters, 135, 41–56.
McManus, J. F., Anderson, R. F., Broecker, W. S., Fleisher, M. Q., & Higgins, S. M. (1998). Radiometrically determined sedimentary fluxes in the sub-polar North Atlantic during the last 140,000 years. Earth and Planetary Science Letters, 155, 29–43. https://doi.org/10.1016/S0012-821X(97)00201-X
Henderson, G. M., Heinze, C., Anderson, R. F., & Winguth, A. M. E. (1999). Global distribution of the 230Th flux to ocean sediments constrained by GCM modelling. Deep-Sea Research Part I: Oceanographic Research Papers, 46(11), 1861–1893. https://doi.org/10.1016/S0967-0637(99)00030-8
Thomson, J., Nixon, S., Summerhayes, C. P., Schönfeld, J., Zahn, R., & Grootes, P. (1999). Implications for sedimentation changes on the Iberian margin over the last two glacial/interglacial transitions from (230Thexcess)0 systematics. Earth and Planetary Science Letters, 165(3–4), 255–270. https://doi.org/10.1016/S0012-821X(98)00265-9
Veiga-Pires, C. C., & Hillaire-Marcel, C. (1999). U and Th isotope constraints on the duration of Heinrich events H0-H4 in the southeastern Labrador Sea. Paleoceanography, 14(2), 187–199.
2000s:
Henderson, G. M., & Anderson, R. F. (2003). The U-series Toolbox for Paleoceanography. Reviews in Mineralogy and Geochemistry, 52(1), 493–531. https://doi.org/10.2113/0520493
Francois, R., Frank, M., Rutgers van der Loeff, M. M., & Bacon, M. P. (2004). 230Th normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography, 19(1), n/a-n/a. https://doi.org/10.1029/2003PA000939
2010s:
Marcantonio, F., Lyle, M., & Ibrahim, R. (2014). Particle sorting during sediment redistribution processes and the effect on 230Th-normalized mass accumulation rates. Geophysical Research Letters, 41, 5547–5554. https://doi.org/10.1002/2014GL060477
Hayes, C.T., 2013. Marine thorium and protactinium distributions: Tools for past and present chemical flux. Dissertation.
Costa, K., & McManus, J. (2017). Efficacy of 230Th normalization in sediments from the Juan de Fuca Ridge, northeast Pacific Ocean. Geochimica et Cosmochimica Acta, 197, 215–225. https://doi.org/10.1016/j.gca.2016.10.034
Loveley, M. R., Marcantonio, F., Lyle, M., Ibrahim, R., Hertzberg, J. E., & Schmidt, M. W. (2017). Sediment redistribution and grain size effects on 230Th-normalized mass accumulation rates and focusing factors in the Panama Basin. Earth and Planetary Science Letters, 480, 107–120. https://doi.org/10.1016/J.EPSL.2017.09.046
Geibert, W., Stimac, I., Loeff, M.M.R. van der, Kuhn, G. (2019). Dating Deep-Sea Sediments With 230Th Excess Using a Constant Rate of Supply Model. Paleoceanography and Paleoclimatology 34, 1895–1912. https://doi.org/10.1029/2019PA003663
Lund, D.C., Pavia, F.J., Seeley, E.I., McCart, S.E., Rafter, P.A., Farley, K.A., Asimow, P.D., Anderson, R.F. (2019). Hydrothermal scavenging of 230Th on the Southern East Pacific Rise during the last deglaciation. Earth and Planetary Science Letters 510, 64–72. https://doi.org/10.1016/j.epsl.2018.12.037
Missiaen, L., Waelbroeck, C., Pichat, S., Jaccard, S.L., Eynaud, F., Greenop, R., Burke, A. (2019). Improving North Atlantic Marine Core Chronologies Using 230Th Normalization. Paleoceanography and Paleoclimatology 34, 1057–1073. https://doi.org/10.1029/2018PA003444
2020s:
Costa, K.M., Hayes, C.T., Anderson, R.F., Pavia, F.J., Bausch, A., Deng, F., Dutay, J.‐C., Geibert, W., Heinze, C., Henderson, G., Hillaire‐Marcel, C., Hoffmann, S., Jaccard, S.L., Jacobel, A.W., Kienast, S.S., Kipp, L., Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J.F., Mekik, F., Middleton, J.L., Missiaen, L., Not, C., Pichat, S., Robinson, L.F., Rowland, G.H., Roy‐Barman, M., Tagliabue, A., Torfstein, A., Winckler, G. & Zhou, Y. (2020). 230Th Normalization: New Insights on an Essential Tool for Quantifying Sedimentary Fluxes in the Modern and Quaternary Ocean. Paleoceanography and Paleoclimatology, 35: e2019PA003820. https://doi.org/10.1029/2019PA003820
Middleton, J.L., Mukhopadhyay, S., Costa, K.M., Pavia, F.J., Winckler, G., McManus, J.F., D’Almeida, M., Langmuir, C.H., Huybers, P.J. (2020). The spatial footprint of hydrothermal scavenging on 230ThXS-derived mass accumulation rates. Geochimica et Cosmochimica Acta 272, 218–234. https://doi.org/10.1016/j.gca.2020.01.007
Hayes, C.T., Costa, K.M., Anderson, R.F., Calvo, E., Chase, Z., Demina, L.L., Dutay, J., German, C.R., Heimbürger‐Boavida, L., Jaccard, S.L., Jacobel, A., Kohfeld, K.E., Kravchishina, M.D., Lippold, J., Mekik, F., Missiaen, L., Pavia, F.J., Paytan, A., Pedrosa‐Pamies, R., Petrova, M.V., Rahman, S., Robinson, L.F., Roy‐Barman, M., Sanchez‐Vidal, A., Shiller, A., Tagliabue, A., Tessin, A.C., van Hulten, M., Zhang, J. (2021). Global Ocean Sediment Composition and Burial Flux in the Deep Sea. Global Biogeochem Cycles 35. https://doi.org/10.1029/2020GB006769
Sukumaran, N.P., Borole, D.V. (2021). 230Th derived glacial to Holocene sediment fluxes in the southern Arabian Sea: insights into carbonate sedimentation. Boreas 50, 441–456. https://doi.org/10.1111/bor.12508
Zhou, Y., McManus, J.F., Jacobel, A.W., Costa, K.M., Wang, S., Alvarez Caraveo, B. (2021). Enhanced iceberg discharge in the western North Atlantic during all Heinrich events of the last glaciation. Earth and Planetary Science Letters 564, 116910. https://doi.org/10.1016/j.epsl.2021.116910
Geibert, W., Matthiessen, J., Stimac, I., Wollenburg, J., Stein, R. (2021). Glacial episodes of a freshwater Arctic Ocean covered by a thick ice shelf. Nature 590, 97–102. https://doi.org/10.1038/s41586-021-03186-y
Ouyang, S., Duan, Z., Lin, W., Luo, Y. (2022). Revisit of thorium-based dust fluxes and their implications for the iron fertilization hypothesis. Journal of Oceanography 78, 49–62. https://doi.org/10.1007/s10872-021-00626-1
Purcell, K., Hillaire-Marcel, C., de Vernal, A., Ghaleb, B., Stein, R. (2022). Potential and limitation of 230Th-excess as a chronostratigraphic tool for late Quaternary Arctic Ocean sediment studies: An example from the Southern Lomonosov Ridge. Marine Geology 448, 106802. https://doi.org/10.1016/j.margeo.2022.106802
Song, T., Hillaire-Marcel, C., Liu, Y., Ghaleb, B., de Vernal, A. (2023). Cycling and behavior of 230Th in the Arctic Ocean: Insights from sedimentary archives. Earth-Science Reviews 244, 104514. https://doi.org/10.1016/j.earscirev.2023.104514
Costa, K.M., Pavia, F.J., Piecuch, C.G., McManus, J.F., Weinstein, G.A. (2024). Pelagic sedimentation rates in the North Pacific using Thorium-230 depth profiling. Geochimica et Cosmochimica Acta 369, 126–140. https://doi.org/10.1016/j.gca.2023.11.020