This page lists literature on the use of (230Thexcess)0 as a constant flux proxy. For literature on 231Pa/230Th, see this page. This compilation is a work in progress. If you find that I missed any paper, kindly email me at yuxin_zhou@ucsb.edu

1980s:

  • Suman, D. O., & Bacon, M. P. (1989). Variations in Holocene sedimentation in the North American Basin determined from 230Th measurements. Deep Sea Research Part A, Oceanographic Research Papers, 36(6), 869–878. https://doi.org/10.1016/0198-0149(89)90033-2

1990s:

  • Francois, R., Bacon, M. P., & Suman, D. O. (1990). Thorium 230 profiling in deep-sea sediments: high-resolution records of flux and dissolution of carbonate in the equatorial Atlantic during the last 24,000 years. Paleoceanography, 5(5), 761–787. https://doi.org/0883-8305/90/90PA-016

  • Thomson, J., Colley, S., Anderson, R., Cook, G. T., MacKenzie, A. B., & Harkness, D. D. (1993). Holocene sediment fluxes in the northeast Atlantic from 230Thexcess and radiocarbon measurements. Paleoceanography, 8(5), 631–650.

  • Francois, R., & Bacon, M. P. (1994). Heinrich events in the North Atlantic: radiochemical evidence. Deep-Sea Research Part I, 41(2), 315–334. https://doi.org/10.1016/0967-0637(94)90006-X

  • Thomson, J., Higgs, N. C., & Clayton, T. (1995). A geochemical criterion for the recognition of Heinrich events and estimation of their depostional fluxes by the (230Thexcess)0 profiling method. Earth and Planetary Science Letters, 135, 41–56.

  • McManus, J. F., Anderson, R. F., Broecker, W. S., Fleisher, M. Q., & Higgins, S. M. (1998). Radiometrically determined sedimentary fluxes in the sub-polar North Atlantic during the last 140,000 years. Earth and Planetary Science Letters, 155, 29–43. https://doi.org/10.1016/S0012-821X(97)00201-X

  • Henderson, G. M., Heinze, C., Anderson, R. F., & Winguth, A. M. E. (1999). Global distribution of the 230Th flux to ocean sediments constrained by GCM modelling. Deep-Sea Research Part I: Oceanographic Research Papers, 46(11), 1861–1893. https://doi.org/10.1016/S0967-0637(99)00030-8

  • Thomson, J., Nixon, S., Summerhayes, C. P., Schönfeld, J., Zahn, R., & Grootes, P. (1999). Implications for sedimentation changes on the Iberian margin over the last two glacial/interglacial transitions from (230Thexcess)0 systematics. Earth and Planetary Science Letters, 165(3–4), 255–270. https://doi.org/10.1016/S0012-821X(98)00265-9

  • Veiga-Pires, C. C., & Hillaire-Marcel, C. (1999). U and Th isotope constraints on the duration of Heinrich events H0-H4 in the southeastern Labrador Sea. Paleoceanography, 14(2), 187–199.

2000s:

  • Henderson, G. M., & Anderson, R. F. (2003). The U-series Toolbox for Paleoceanography. Reviews in Mineralogy and Geochemistry, 52(1), 493–531. https://doi.org/10.2113/0520493

  • Francois, R., Frank, M., Rutgers van der Loeff, M. M., & Bacon, M. P. (2004). 230Th normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary. Paleoceanography, 19(1), n/a-n/a. https://doi.org/10.1029/2003PA000939

2010s:

  • Marcantonio, F., Lyle, M., & Ibrahim, R. (2014). Particle sorting during sediment redistribution processes and the effect on 230Th-normalized mass accumulation rates. Geophysical Research Letters, 41, 5547–5554. https://doi.org/10.1002/2014GL060477

  • Hayes, C.T., 2013. Marine thorium and protactinium distributions: Tools for past and present chemical flux. Dissertation.

  • Costa, K., & McManus, J. (2017). Efficacy of 230Th normalization in sediments from the Juan de Fuca Ridge, northeast Pacific Ocean. Geochimica et Cosmochimica Acta, 197, 215–225. https://doi.org/10.1016/j.gca.2016.10.034

  • Loveley, M. R., Marcantonio, F., Lyle, M., Ibrahim, R., Hertzberg, J. E., & Schmidt, M. W. (2017). Sediment redistribution and grain size effects on 230Th-normalized mass accumulation rates and focusing factors in the Panama Basin. Earth and Planetary Science Letters, 480, 107–120. https://doi.org/10.1016/J.EPSL.2017.09.046

  • Geibert, W., Stimac, I., Loeff, M.M.R. van der, Kuhn, G. (2019). Dating Deep-Sea Sediments With 230Th Excess Using a Constant Rate of Supply Model. Paleoceanography and Paleoclimatology 34, 1895–1912. https://doi.org/10.1029/2019PA003663

  • Lund, D.C., Pavia, F.J., Seeley, E.I., McCart, S.E., Rafter, P.A., Farley, K.A., Asimow, P.D., Anderson, R.F. (2019). Hydrothermal scavenging of 230Th on the Southern East Pacific Rise during the last deglaciation. Earth and Planetary Science Letters 510, 64–72. https://doi.org/10.1016/j.epsl.2018.12.037

  • Missiaen, L., Waelbroeck, C., Pichat, S., Jaccard, S.L., Eynaud, F., Greenop, R., Burke, A. (2019). Improving North Atlantic Marine Core Chronologies Using 230Th Normalization. Paleoceanography and Paleoclimatology 34, 1057–1073. https://doi.org/10.1029/2018PA003444

2020s:

  • Costa, K.M., Hayes, C.T., Anderson, R.F., Pavia, F.J., Bausch, A., Deng, F., Dutay, J.‐C., Geibert, W., Heinze, C., Henderson, G., Hillaire‐Marcel, C., Hoffmann, S., Jaccard, S.L., Jacobel, A.W., Kienast, S.S., Kipp, L., Lerner, P., Lippold, J., Lund, D., Marcantonio, F., McGee, D., McManus, J.F., Mekik, F., Middleton, J.L., Missiaen, L., Not, C., Pichat, S., Robinson, L.F., Rowland, G.H., Roy‐Barman, M., Tagliabue, A., Torfstein, A., Winckler, G. & Zhou, Y. (2020). 230Th Normalization: New Insights on an Essential Tool for Quantifying Sedimentary Fluxes in the Modern and Quaternary Ocean. Paleoceanography and Paleoclimatology, 35: e2019PA003820. https://doi.org/10.1029/2019PA003820

  • Middleton, J.L., Mukhopadhyay, S., Costa, K.M., Pavia, F.J., Winckler, G., McManus, J.F., D’Almeida, M., Langmuir, C.H., Huybers, P.J. (2020). The spatial footprint of hydrothermal scavenging on 230ThXS-derived mass accumulation rates. Geochimica et Cosmochimica Acta 272, 218–234. https://doi.org/10.1016/j.gca.2020.01.007

  • Hayes, C.T., Costa, K.M., Anderson, R.F., Calvo, E., Chase, Z., Demina, L.L., Dutay, J., German, C.R., Heimbürger‐Boavida, L., Jaccard, S.L., Jacobel, A., Kohfeld, K.E., Kravchishina, M.D., Lippold, J., Mekik, F., Missiaen, L., Pavia, F.J., Paytan, A., Pedrosa‐Pamies, R., Petrova, M.V., Rahman, S., Robinson, L.F., Roy‐Barman, M., Sanchez‐Vidal, A., Shiller, A., Tagliabue, A., Tessin, A.C., van Hulten, M., Zhang, J. (2021). Global Ocean Sediment Composition and Burial Flux in the Deep Sea. Global Biogeochem Cycles 35. https://doi.org/10.1029/2020GB006769

  • Sukumaran, N.P., Borole, D.V. (2021). 230Th derived glacial to Holocene sediment fluxes in the southern Arabian Sea: insights into carbonate sedimentation. Boreas 50, 441–456. https://doi.org/10.1111/bor.12508

  • Zhou, Y., McManus, J.F., Jacobel, A.W., Costa, K.M., Wang, S., Alvarez Caraveo, B. (2021). Enhanced iceberg discharge in the western North Atlantic during all Heinrich events of the last glaciation. Earth and Planetary Science Letters 564, 116910. https://doi.org/10.1016/j.epsl.2021.116910

  • Geibert, W., Matthiessen, J., Stimac, I., Wollenburg, J., Stein, R. (2021). Glacial episodes of a freshwater Arctic Ocean covered by a thick ice shelf. Nature 590, 97–102. https://doi.org/10.1038/s41586-021-03186-y

  • Ouyang, S., Duan, Z., Lin, W., Luo, Y. (2022). Revisit of thorium-based dust fluxes and their implications for the iron fertilization hypothesis. Journal of Oceanography 78, 49–62. https://doi.org/10.1007/s10872-021-00626-1

  • Purcell, K., Hillaire-Marcel, C., de Vernal, A., Ghaleb, B., Stein, R. (2022). Potential and limitation of 230Th-excess as a chronostratigraphic tool for late Quaternary Arctic Ocean sediment studies: An example from the Southern Lomonosov Ridge. Marine Geology 448, 106802. https://doi.org/10.1016/j.margeo.2022.106802

  • Song, T., Hillaire-Marcel, C., Liu, Y., Ghaleb, B., de Vernal, A. (2023). Cycling and behavior of 230Th in the Arctic Ocean: Insights from sedimentary archives. Earth-Science Reviews 244, 104514. https://doi.org/10.1016/j.earscirev.2023.104514

  • Costa, K.M., Pavia, F.J., Piecuch, C.G., McManus, J.F., Weinstein, G.A. (2024). Pelagic sedimentation rates in the North Pacific using Thorium-230 depth profiling. Geochimica et Cosmochimica Acta 369, 126–140. https://doi.org/10.1016/j.gca.2023.11.020